
Appendix D 13:  Finite element formulation of plane stress plasticity 
 
     In [1], we state the basic FEM procedures to deal with the elastic-plastic problem applicable to the 
general three-dimensional state of stress, plane strain, and an axisymmetric body. These are problems in 
which all three components of the normal stresses are free variables. In the plane stress, however, the 
component perpendicular to the midplane of the body is equal to zero, but the component of the stress 
deviator in this direction is not zero, and these relationships can not be used for this case without some 
modifications. 
 
1.  Plane stress linear elasticity 

     The plane stress assumption is introduced in the analysis of bodies at which one of the dimensions is 
much more smaller than the others. Consider such a loaded body in equilibrium (Fig. 1) where the plane (x, 
y) is the plane of symmetry (midplane S) of the body. Let all external loads (including reactions) are 
distributed symmetrically to the relatively small thickness t (x, y) of the body. Thus the load resultants 
acting in the midplane: the continuous line load p(x,y) and the body load b(x,y), are independent of the 
variable z. Under these conditions, it is enough to consider only the displacement functions of the points on 
the midplane of the body 
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Fig. 1 The midplane of the body and a 2D finite element (hrúbka = thickness) 

 

The non-zero components of the stress tensor placed in the column vector σσσσ  are only the components 
that lie in the plane (x, y)  

σσ == σ σ τx y xy

T
                                                                      (2)  

and hence we say that the body (wall, membrane) is in the plane stress state. 

     In the column vector εεεε  of the strain components,  we will also consider only three components (In fact 

material reacts to the plane stress state by the transverse deformation zε , but this can be determined from 

the deformations in the midplane.) 

 2x y xyε ε ε =  εεεε  (3) 

After simplifications 

 0z yz zx yz zxσ τ τ ε ε= = = = =  (4) 

the strains in the plane (x,y) are given by 
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     From the physical (material) equations we have 
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 ( ) ( ) ( )2 11 1
, , 2             xy

x x y y x y xy xy
E E E G

τν
ε σ νσ ε νσ σ ε τ

+
= − = − + = =   (6) 

and from the condition 0zσ =  

 ( )z x y
E

νε σ σ= − +  (7) 

Inverting  (6) we get the stress components 

                 ( )21
x x y

Eσ ε νε
ν

= +
−

,   ( )21
y x y

Eσ νε ε
µ

= +
−

,  xy xyGτ γ=                                  (8)     

Now the strain zε  can be expressed by substitution  (8) to (7)  

 ( )
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νε ε ε
ν

= − +
−

 (9) 

The physical (constitutive) relationships in the matrix form are given by 
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In the equations above  E  is the Young modulus, ν  denotes the Poisson ratio and 
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is the shear modulus of the material. 

2.  Von Mises plane stress isotropic small strain plasticity with the linear hardening 

     In this case, we again consider only those strain components that lie in the midplane because again zε  

can be expressed by using these components and for the  plastic strain p
zε  we consider incompressible 

material at plastic yielding ( 0.5ν = ). Thus, we have  

 ( )
1

e p e e p p
z z z x y x y

νε ε ε ε ε ε ε
ν

 = + = − + + + − 
 (12) 

where from the assumption of small strain the split of zε  into elastic and plastic part is introdusced. 

     We need the von Mises equivalent stress  σ   for the plasticity condition  

 ( ) 0p
kf σ σ ε= − =  (13) 

which at the plane stress state has form 

 2 2 23x y x y xyσ σ σ σ σ τ= + − +  (14) 

and where ( )p
kσ ε  is the uniaxial hardened yield stress – a function of the accumulated plastic strain 

pε . 

Then the vector of plastic yielding is given by 
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3. Stress increment specification  

     For the elastic test (trial) stress in the numerical incremental integration step from n to 1n +  we have  
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and the equations of stress components after the stress point projection onto the updated yield surface are  
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where λ∆  is the unknown incremental plastic multiplier. 

     After an arrangement of equations (17), we get 
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The unknown plastic multiplier ∆λ  has to satisfy the plasticity condition  (13) 

 ( ) ( ) ( )1 1 0n n kf λ σ λ σ λ+ +∆ = ∆ − ∆ =  (19) 

where for  a linear hardening material the hardened yield stress kσ is  

 ( ) 1k k p k k nH H Hσ λ σ ε σ λ σ σ λ+∆ = + = + ∆ = + ∆  (20) 

depending on the initial yield stress kσ , the accumulated plastic strian pε , and the hardening modulus  
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where tE  is so-called the elastoplastic tangent modulus. 

     The relationship for the λ∆  determitation has a more simple form when one uses the square of the 
condition (19) 

 ( ) ( ) ( ) ( )2 2 2
1 1 0n n kq fλ λ σ λ σ λ+ +∆ = ∆ = ∆ − ∆ =  (22) 

Squaring the von Mises stress  σ  (14)  we get  
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and after substituting (18)  
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Then the auxiliary function q (22) is given by    
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     The nonlinear equation (25), in fact, the other form of the consistency condition (13), enables us to solve 

∆λ  by the Newton-Raphson iteration. Decomposition of the function q in the reduced Tylor series gives 
the iterative relationship  
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where q′ is the derivative of function q by ∆λ  and which form according to (25) and (20) is as follows 
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From (24) after extraction and differentiation by ∆λ  we get the last needed relationship for the iterative 
procedure  
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     The calculation of ∆λ  and the resulting stress 
1n+σσσσ  shows the following example (numerical results 

were calculated by the Mathematica 5 program given in Fig. 2). 
 
Example 1 

     Consider a body made of steel material and loaded by plane stress. Its properties are approximated by 
von Mises loading function and linear hardening. Consider a material particle, which previous state is 

without stress, deformed by strains 0,002xε = , 0,001yε = −  and 2 0,002xy xyγ ε= =  and determine from 

the explicit relationships given above the final values of the stress components  in the next integration step, 

i.e.
1n+σσσσ . Given is E = 200000 MPa, kσ = 200 MPa, the linear elastoplastic tangent modulus tE = 100000 

MPa, ν = 0,3. The required accuracy is 1 1 0,001n n kf σ σ+ += − <  MPa. 

 

Solution 

The test stress (16) is 
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Test of plasticity condition (13) gives 

( ) ( )22 2 2 2 2
0 0 0 0 0 03 373,6 87,9 373,6 87,9 3 153,8x y x y xyσ σ σ σ σ τ= + − + = + − − − + ⋅ =  

= 501,1 MPa > kσ  = 200 MPa 

     Because the test elastic stress 0σ   is  greater than the initial yield stress kσ  of the material point in the 

investigation, it follows that there will occur an   elastic-plastic deformation. The resulting stress in such 

case has to be determined from the above backward integration relationships.  

     The initial values for calculation of stress at the elastic-plastic loading are 0 0λ∆ =  and  

0 200k kσ σ= = . Then, according to (24) up to (28) the iterative calculation was done by the program ( the 

used relations do not contain matrices, and so we have chosen program Mathematica 5) shown in 
Fig. 2 and the results are: 
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     The components of the resulting stress in the investigated point of the body: 

266,0 MPa

45,8 MPa

103,9 MPa
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= −
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The resulting (hardened) yield stress of the material: 

1 342,7 MPaknσ + =  

The resulting equivalent plastic strain:  
-47,135 10pε =  

(* Backward-Euler, Plane stress - explicitly *) 

Off[General::spell,General::spell1] 

 

(* Input values *) 

EE=200000; mi=0.3; Sigk0=200; G=EE/(2+2*mi); Et=100000; H=EE*Et/(EE-Et); 

 

(* Start point *) 

sxn=0; 

syn=0; 

sxyn=0; 

 

(* Deformation increment *) 

EpsX= 0.002; 

EpsY=-0.001; 

EpsXY=0.002; 
 

(* Elastic trial stress *) 

K=EE/2/(1-mi); 

K1=EE/(1-mi^2); 

sx0=sxn+K1*(EpsX+mi*EpsY); 

sy0=syn+K1*(EpsY+mi*EpsX); 

sxy0=sxyn+K1/2*(1-mi)*EpsXY; 

 

(* Initial values of iteration *) 

La=0; 

Sigk=Sigk0; 

Sekv=0; 

c1=(sx0+sy0)^2;  

c2=3*(sx0-sy0)^2+12*sxy0^2; 

(* Iterative correction *) 

While [Abs[Sigk-Sekv]>0.001, 

Sekv2=0.25*(c1/(1+K*La)^2+c2/(1+3*La*G)^2); 

q=Sekv2-Sigk^2; 

Sekv=Sqrt[Sekv2]; 

dSekv=-1/(Sekv)*(K*c1/(1+K*La)^3+3*G*c2/(1+3*G*La)^3); 

dq=2*Sekv*dSekv-2*Sigk*(H*Sekv+La*H*dSekv); 

La=La-q/dq; 

Sigk=Sigk0+H*La*Sekv 

]; 

(* Stess calculation *) 

A1=1+0.5*La*EE/(1-mi); 

A2=1+3*La*G; 

sps=(sx0+sy0)/A1; 

sms=(sx0-sy0)/A2; 

SXdef=(sps+sms)/2; 

SYdef=(sps-sms)/2; 

SXYdef=sxy0/A2; 

(* Value of the new yield stress *) 

SigkDef=Sigk; 

(* Equivalent plastic deformation *) 

EplastPruh=La*Sekv; 

Print["Výsledky"/TableForm[{{"SX =", SXdef,"MPa"}, 

                 {"SY =", SYdef,"MPa"}, 

                 {"SXY =", SXYdef,"MPa"}, 

                 {"SigK =", SigkDef,"MPa"}, 

                 {"EpsPlast =", EplastPruh} 

                 }]] 

 

Výsledky

SX= 265.994 MPa

SY= -45.7719 MPa

SXY= 103.922 MPa

SigK= 342.669 MPa

EpsPlast= 0.000713346  

Fig. 2 Mathematica 5 program and results of the example 1 solution (Výsledky = Results) 
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Example 2 

Solve the previous example by Ansys. 

Solution 

    Material particle of the body can be replaced by a single plane stress finite element of unit thickness with 

given material properties. The problem of the 
xy

γ  input can be solved by placing the element edges in the 

directions of the main strains 1ε  and 2ε  for which we have  

( ) ( ) ( ) ( )2 2 2 2

1,2

1 2

1 0,002 0,001 1
0,002 0,001 0,002

2 2 2 2

0,0005 0,0018027 0,0023027; 0,0013027

x y

x y xy

ε ε
ε ε ε γ

ε ε

+ −
= ± − + = ± + + =

= ± → = = −
 

and for the direction of 1ε  we receive 

0,002 2
2 16,845

0,002 0,001 3

xy

x y

tg
γ

ϕ ϕ
ε ε

= = = → = °
− +

 

Now the example can be solved in the Ansys interactive environment by these steps: 

1. Job name 
Utility Menu>File>Change Jobname..., /FILNAM = PlaneStress1, OK; 

2. Element type 
Main Menu>Preprocessor>Element Type>Add/Edit/Delete,  Add..., Solid Quad 8 node 183, OK, Close; 

3. Material properties 
Linear 
Preprocessor>Material Props>Material Models, Structural, Linear, Elastic, Isotropic,  EX = 2E5, PRXY = 0.3, 

OK,  
Nonlinear 
Nonlinear, Inelastic, Rate Independent, Isotropic Hardening Plasticity, Mises Plasticity, Bilinear, Yield Strss = 

200, Tang Mod = 1E5, OK, Material, Exit; 
 
4. Element keypoints (numbering is automatic) 
Utility Menu>Work Plane>Offset WP by Increments..., Degrees = 16.845, 0, 0, OK; 
Utility Menu>Work Plane>Local Coordinate Systems>Create Local CS>At WP Origin..., OK; 

Preprocessor>Modeling>Create>Keypoints>In Active CS:    X = 0, Y = 0, Apply, 
                                                                                                        X = 1, Y = 0, Apply, 
                                                                                                        X = 1, Y = 1, Apply, 
                                                                                                        X = 0, Y = 1, OK; 
5. Element area 

Preprocessor>Modeling>Create>Areas>Arbitrary>Trough KPs: ↑KP1,↑KP2,↑KP3,↑KP4, OK; 

6. Element creating  
Preprocessor>Meshing>Mesh Tool: Size Controls: Lines, Set: Pick All, NDIV = 1, OK; 
(Preprocessor>Meshing>Mesh Tool): Mesh, Pick All, Close; 

7. 1ε  and 2ε  input 

 Preprocessor>Modeling>Move/Modify>Rotate Node CS>To Active CS ↑, Pick All; 
Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Nodes  

List of Items:  1, 8, 6, OK, UX, Value = 0, Apply, 
  1, 3, 2, OK, UY, Value = 0, Apply, 
  2, 5, 4, OK, UX, Value = 0.0023027, Apply, 
  6, 7, 4, OK, UY, Value = - 0.0013027, OK; 
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8. Solution 
Main Menu>Solution>Analysis Type>Sol’n Controls...,Time at end of loadstep = 1, Number of substeps = 1, 

OK; 
Solution>Solve>Current LS, Solve Current Load Step, OK; 
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9. Stress results 
Main Menu>General Postproc>List Results> Nodal Solution..., Stress,  X-Component of stress, OK; 
 
 PRINT S    NODAL SOLUTION PER NODE 

  THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES                          

  

    NODE    SX          SY          SZ          SXY         SYZ         SXZ      

       1   265.99     -45.766      0.0000      103.92      0.0000      0.0000     

       2   265.99     -45.766      0.0000      103.92      0.0000      0.0000     

       4   265.99     -45.766      0.0000      103.92      0.0000      0.0000     

       6   265.99     -45.766      0.0000      103.92      0.0000      0.0000     

 

10. End of job 
Ansys Toolbar>Quit>Save Geom+Loads, OK; 
 
The results are the same as at the analytical solution. 
 
4.  Matrix formulation 

    The mentioned analytical determination of stress state in the elastic-plastic load step is indeed an elegant 
and simple procedure but if we are interested in creating a FEM program for solving elastic-plastic plane 
stress problems it is necessary to establish basic relations and save the necessary values for the next load 
step in the matrix form. In such case, the state variables are written to the column matrices (vectors) 
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where at the deformation variables we consider  tensor components for shear strain ( 2xy xyγ ε= ) and for 

the deviatoric stress component we will implement 

 =s Pσσσσ  (30) 

 where 
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Now we can express the von Mises equivalent stress (14) as follows 
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 2 2 3 3
2 2

3 T T
x y x y xyσ σ σ σ σ τ= + − + = =s Pσ σ σσ σ σσ σ σσ σ σ  (32) 

The plasticity condition (13) is given by 

 3
2 ( ) 0T p

kf σ ε= − =Pσ σσ σσ σσ σ  (33) 

and its preferred squared form is  

 21 1
2 2 3 ( ) 0T p

kf σ ε= − =Pσ σσ σσ σσ σ  (34) 

     The easiest way to get the increment of the plastic deformation vector is by using the formula for 
deriving the scalar quadratic form  

 2 1
2

( )p Tfλ λ λ∂ ∂
∆ = ∆ = ∆ = ∆

∂ ∂
P Pε σ σ σε σ σ σε σ σ σε σ σ σ

σ σσ σσ σσ σ
 (35) 

where for the vector of plasticity in this case we have 

 2f∂
= =

∂
f P sσ =σ =σ =σ =

σσσσ
 (36) 

The increment of plastic deformation is 

 2 2
3 3

p T Tε λ λ∆ = ∆ = ∆s Pσ σ σσ σ σσ σ σσ σ σ  (37) 

In an increment step from time nt  to time 1nt + ,  the values of the elastic predictor are  
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 (38) 

where ∆εεεε  is the known linear strain increment calculated from the load increment. In (38) all values are 
known and we can check the plasticity condition (34). First, we calculate 

 21 1
2 1 1 12 3( ) ( )test test T test test

n n k nf σ ε+ + += −Pσ σσ σσ σσ σ  (39) 

and if 2 0test
f ≤ , then the test values are valid for this (elastic) load step, if this is not the case, then we have 

to return these values to the changed theplasticity area by the plastic corrector. 

5. Equations for the return of the stress point on the yield area (plastic corrector) 

     The first equation, which the unknow stress 1n+σσσσ  have to fulfill at a plastic load step, is the condition 

(34) at the time 1nt +   

 21 1
2 1 1 12 3 ( ) 0T

n n k nf σ ε+ + += − =Pσ σσ σσ σσ σ  (40) 

The equivalent plastic deformation in the load step will change by the increment (37) to 

 2
1 1 13

p p T
n n n nε ε λ+ + += + ∆ Pσ σσ σσ σσ σ  (41) 

and the last equation in this system of nonlinear equations is the implicit relationship of the backward Euler 
method for calculation of the elastic deformation  

 1 1 1 1 1
etest eteste

n n n n nλ λ+ + + + +∆ ∆f Pε = ε − = ε − σε = ε − = ε − σε = ε − = ε − σε = ε − = ε − σ  (42) 

     After a suitable arrangement the system of equations (40) to (42) can be changed to only one nonlinear 

equation with only one unknown λ∆ .  Startin with the elastic constitutive equations [1] 

 1 1 1 1 1 1( ) ( )eteste e e e p
n n n n n n nλ λ+ + + + + += = ∆ = − − ∆D D P D Pσ ε ε − σ ε ε σσ ε ε − σ ε ε σσ ε ε − σ ε ε σσ ε ε − σ ε ε σ  (43) 

 gradually we get  
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With the known λ∆  it is possible, according to (44), to calculate the stress components from 

 1 1
ˆ ( )p

n n n+ += −Dσ ε εσ ε εσ ε εσ ε ε  (45) 

or, because 1 1( )test e p
n n n+ += −Dσ ε εσ ε εσ ε εσ ε ε  , from 

 1
1 1

ˆ e test
n n

−
+ += DDσ σσ σσ σσ σ  (46) 

where 

 1 1ˆ ( )e λ− −= + ∆D D P  (47) 

 

6. Specifying the plastic multiplier from the consistency condition 

     There is only one unknown in the above equations, namely the plastic multiplier λ∆ . Its value has to 

fulfill the consistency condition (40). Direct substitution of the matrix relations for 1n+σσσσ  (46) in this 

condition leads to an unpleasant matrix form of a nonlinear equation and therefore is better to use an 
explicit form which derivation we will show in this section. In the case of isotropic elastic material the 

matrices     e
D and P  have the same eigenvectors and it is possible by their orthogonal transformation in 

the plasticity condition to change them to diagonal and so to get an explicit equation form suitable for λ∆  
calculation.  The transformation relations are 
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where 
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and e
D is given by (10).  

From (44) we get 
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+ + += + ∆ =I D P Q Qσ σ Γ σσ σ Γ σσ σ Γ σσ σ Γ σ  (50) 
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Substituting (50) into the consistency condition (40) gives the simplified explicit equation 

 ( ) 2 2 21 1 1 1
1 P 1 12 3 2 3( ) 0

T
test T test p
n n k n Sσ ε φ+ + +− = − =Q Qσ ΓΛ Γ σσ ΓΛ Γ σσ ΓΛ Γ σσ ΓΛ Γ σ  (52) 

where 
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with 
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For the yield stress at the end of the load step we have 

 ( )2 2 2
1 3( )p p

k n k nS Hσ ε σ ε λ φ+ = = + + ∆  (54) 

Now the last problem is to calculate λ∆  from the nonlinear equation  (52) . 

7. Determination of the plastic multiplier by the Newton-Raphson method 

     We are searching such value of the plastic multiplier  at which the equation (52) will be fulfilled with 

sufficient accuracy. In other words at the Newton-Raphson method the value of λ∆  has to change in such 
way that function 

 ( ) 2 21 1
2 3q Sλ φ∆ = −  (55) 

converges to zero. The classical iterative formula for an equation with one unknown in our case gives  

 
( )
( )

1

'

k

k k

k

q

q

λ
λ λ

λ
+

∆
∆ = ∆ −

∆
 (56) 

where  
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q S
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 (57) 

The partial derivatives needed for 'q  can be determined from (53) and (54) 
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8.  Matrix relations in Fortran 

     In the FEM programs above relationships are written in the form of a subroutine which is called in the 
cycle for each integration element point  of the body model. To conclude this section we show such 
subroutine in a form an executable program. The program is based on the above relations and it should be 
comprehensible for peaple with an elementary knowledge of Fortran language. The program solve the 
same example as was above solved with other programs (example 1 and 2). 
 
      PROGRAM RETURN 
C************************************************** 
C     Stress point return on the plasticity area * 
C************************************************** 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION 
     1    STRES(3) ,SVECT(3), EPS(3),  
     2    A(3,3),B(3,3),P(3,3),D(3,3) 
      DATA R0   ,R1   ,R2   ,R3   ,R4   ,R6    
     1    /0.D0 ,1.D0 ,2.D0 ,3.D0 ,4.D0 ,6.D0 / 
      DATA ALLOW / 0.00001D0 / 
 100  FORMAT(/' The maximum number of iterations was exceeded/) 
 200  FORMAT(' Medza sklzu =',F10.2) 
 300  FORMAT(' Napatia SX, SY, SXY =',3F10.2) 
      ROOT3 = SQRT(R3) 
      DLAMBDA = R0 
      I = 0 
      EPEKV = 0.0D0 
      E = 2.0D5 
      POIS = 0.3D0 
      F = E/(R3*(R1-POIS)) 
      G = E/(R2*(R1+POIS)) 
      CALL MATICA(D) !Matrix De calculation 
      EPS(1) = 2.0D-3 !Given components of the deformation increment 
      EPS(2) = -1.0D-3 

co
py

 fr
om

 m
kp

-f
em

.s
k



      EPS(3) = 2.0D-3 
      STRES(1) = D(1,1)*EPS(1)+D(1,2)*EPS(2) !Components of the trial stress 
      STRES(2) = D(2,1)*EPS(1)+D(2,2)*EPS(2) 
      STRES(3) = D(3,3)*EPS(3)  
      H = 2.0D5  !the hardening modulus 
      SIGK0 = 2.0D2 !the initial yield stress 
      A1 = (STRES(1)+STRES(2))*(STRES(1)+STRES(2)) 
      A2 = (STRES(1)-STRES(2))*(STRES(1)-STRES(2)) 
      A3 = R2*STRES(3)*STRES(3) 
      DLAMBDA = R0 
      EPSTN = EPEKV 
      SQ2D3 = SQRT(R2/R3) 
      I = 0 
  210 I = I+1 !Iteration cycle of the DeltaLambda calculation by N-R metod 
      D1 = R1+DLAMBDA*F 
      D2 = R1+R2*DLAMBDA*G 
      FI = A1/(R6*D1*D1)+A2/(R2*D2*D2)+A3/(D2*D2) 
      FI = SQRT(FI) 
      DFI = -R2*A1*F/(R6*D1*D1*D1)-R4*A2*G/(R2*D2*D2*D2) 
     1      -R4*A3*G/(D2*D2*D2) 
      DFI = DFI/(R2*FI) 
      EPEKV = EPSTN+DLAMBDA*FI*SQRT(R2/R3) 
      SIGK = SIGK0+H*EPEKV 
      DSIGK = H*SQ2D3*(FI+DLAMBDA*DFI) 
      GFCIA = FI*FI/R2-SIGK*SIGK/R3 
      DGFCIE = FI*DFI-R2*SIGK*DSIGK/R3 
      DLAMBDA = DLAMBDA-GFCIA/DGFCIE 
      IF(GFCIA.GT.ALLOW) GOTO 210 
      IF(I.GT.50)write(*,100)  
C  
      P(1,1) = R2/R3  !P matrix 
      P(1,2) = -R1/R3 
      P(1,3) = R0 
      P(2,1) = -R1/R3 
      P(2,2) = R2/R3 
      P(2,3) = R0 
      P(3,1) = R0 
      P(3,2) = R0 
      P(3,3) = R2 
      CALL INVERT(D,A)  
      DO 220 I = 1,3 
      DO 220 J = 1,3 
      D(I,J) = A(I,J)+DLAMBDA*P(I,J) 
  220 CONTINUE 
      CALL INVERT(D,B) 
      DO 230 I = 1,3 
      DO 230 J = 1,3 
      D(I,J) = R0 
      DO 230 K = 1,3 
      D(I,J) = D(I,J)+B(I,K)*A(K,J) 
  230 CONTINUE 
      DO 240 I = 1,3  !Stress calculation 
      SVECT(I) = R0 
      DO 240 J = 1,3 
      SVECT(I) = SVECT(I)+D(I,J)*STRES(J) 
  240 CONTINUE 
      DO 250 I = 1,3 
      STRES(I) = SVECT(I) 
  250 CONTINUE 
      STRES(4) = R0 
C     Printing results on the monitor screen       
 write(*,300)stres(1),stres(2),stres(3)   
 write(*,200)SIGK  !Yield stress 
  STOP 
      END 
  
      SUBROUTINE MATICA(D) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
  
      DIMENSION  D(3,3) 
      DATA R0,R1,R2/0.0D0,1.0D0,2.0D0/ 
      E = 2.0D5 
      POIS = 0.3D0 
      DO 10 ISTRE=1,3 
      DO 10 JSTRE=1,3 
   10 D(ISTRE,JSTRE)=R0 
      CONST=E/(R1-POIS*POIS) 
      D(1,1)=CONST 
      D(2,2)=CONST 
      D(1,2)=CONST*POIS 
      D(2,1)=CONST*POIS 
      D(3,3)=(R1-POIS)*CONST/R2 
      RETURN 
      END 
 
      SUBROUTINE INVERT(A,B) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION A(3,3),B(3,3) 
      A11 = A(1,1) 
      A12 = A(1,2) 
      A13 = A(1,3) 
      A21 = A(2,1) 
      A22 = A(2,2) 
      A23 = A(2,3) 
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      A31 = A(3,1) 
      A32 = A(3,2) 
      A33 = A(3,3) 
      T1  = A22*A33 - A32*A23 
      T2  = A23*A31 - A21*A33 
      T3  = A21*A32 - A22*A31 
      DETER = A11*T1 + A12*T2 + A13*T3 
      IF(DETER.EQ.0.0) stop 
      DENOM = 1./DETER 
      B(1,1) = T1*DENOM 
      B(2,1) = T2*DENOM 
      B(3,1) = T3*DENOM 
      B(1,2) = (-A12*A33 + A32*A13)*DENOM 
      B(2,2) = ( A11*A33 - A31*A13)*DENOM 
      B(3,2) = (-A11*A32 + A12*A31)*DENOM 
      B(1,3) = ( A12*A23 - A13*A22)*DENOM 
      B(2,3) = (-A11*A23 + A21*A13)*DENOM 
      B(3,3) = ( A11*A22 - A21*A12)*DENOM 
      RETURN 
      END 

Results (Napatia = Stresses, Medza sklzu = Yield stress): 

 

 

9. Consistent tangent material modulus  

     The global tangential stiffness matrix of an FE model is created by an organized summation of its 
element tangential stiffness matrices 

 

K B DBT
e T

Se

dV= ∫
 (60) 

where at a material nonlinear problem the matrix D  is so-colled consistent tangential material modulus of 
the element. The term consistent expresses a requirement, that its value has to be in every incremental 

step consistent with the integration procedure for the solution of  the stress 1n+σσσσ . The definition of the 

tangential material modulus is  

 1 1

1 1

n n
etest

n n

+ +

+ +

∂ ∂
= =
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D

σ σσ σσ σσ σ
εεεε εεεε

 (61) 

The derivations equality in (61) follows from validity 

 1 1
etest p
n n n+ += −ε ε εε ε εε ε εε ε ε  (62) 

The consistent linearization of the local material element matricies will produce the global tangen-
tial stiffness matrix in a such form, which will guarantee quadratic convergence of the global Newton-
Raphson iteration in the load step. 
 

     The derivation of the D  matrix begins with differentiation of expression for stress (43)  

 1 1 1 1
e test e e

n n n nd d d dλ λ+ + + += − ∆ − ∆D D P D Pσ ε σ σσ ε σ σσ ε σ σσ ε σ σ  (63) 

and after similar arrangements as at (43) we get 

 1 1 1
ˆ ( )test

n n nd d d dλ+ + += − ∆D Pσ ε σσ ε σσ ε σσ ε σ  (64) 

It remains to express d λ∆  in (64)  from the consistency condition. 

       Differentiation of the consistency condition (40) gives (note: ( ) 2T T
d d=x x x x ) 

 2
2 1 1 13 0T p

n n k ndf d Hdσ ε+ + += − =Pσ σσ σσ σσ σ  (65) 

From (41) we have 
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∆

= ∆ + Pσ σσ σσ σσ σ  (66) 

where 

 
1
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1 13 3( )T
n n ka σ+ += =Pσ σσ σσ σσ σ  

By substituting (66) in (65) we have 

 2
1 1 1 13

2
( ) 0

3
T T
n n k n nd H d a d

a

λσ λ+ + + +
∆

− ∆ + =P Pσ σ σ σσ σ σ σσ σ σ σσ σ σ σ  (67) 

and after substitute a we get a simplified equation 
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where 

 2
31b H λ= − ∆  

Substitution (64) into (68) gives the following relationship 
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and from this equation the wanted differential is given by 
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The use of  d λ∆  in  (64) gives the resulting expression for the stress increment  

 1 1
test

n nd d+ += Dσ εσ εσ εσ ε  (71) 

with the consistent tangential modulus 

 1 1 1 1
2 2

1 1 1 1

ˆ ˆ ˆ ˆ
ˆ ˆ

4 4ˆ ˆ
9 9

T T
n n n n

T Tk k
n n n n

H H

b b

σ σ
+ + + +

+ + + +

= − = −
+ +

DP PD Ds s D
D D D

PDP s Ds

σ σσ σσ σσ σ

σ σσ σσ σσ σ
 (72) 

     Thus, if a FEM program for solving the elastic-plastic plane stress problem use the incremental 
calculation of the stress according to equations (43) to (46),  then to ensure the quadratic convergence of 
the Newson-Raphson method at solution of the global nonlinear system is necessary to use the material 
modulus (72) at the tangential element matrices (60) calculation. Use of the classical tangential material 
modulus (so-colled elastoplastic continuum tangent operator)  
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= −

+
D D ss  (73) 

leads to a rapid decline inconvergence.  
 
10. The consistent material modulus computation in FORTRAN.  

    According to the relationships of the previous section we have processed the program MATMODUL2D for 
the consistent tangential material modulus with linear isotropic hardening determination in Fortran. In 
a real FEM program, such part acts as a subroutine called for every integral point from the subroutine 
which calculates  the tangential element stiffness matrices. The input variables come to such subroutine as 
parameters of the calling command but in this program illustration we have input them directly in the 
program part noted as Input values.  
 
      PROGRAM MATMODUL2D 
C*************************************************** 
C     CONSISTENT MATERIAL MODULUS VON MISES 2D  * 
C*************************************************** 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION 
     1    D(3,3),A(3,3),P(3,3),AVECT(3),BVECT(3), 
     3    STRES(3),B(3,3) 
      DATA R0     ,R1     ,R2     ,R3     ,R4     ,R9 
     1    /0.0D0  ,1.0D0  ,2.0D0  ,3.0D0  ,4.0D0  ,9.0D0/ 
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C Input values 
      E=2.0D5 
      H=2.0D5 
      POIS=R0 
      DLAMBDA=6.6851D-4 
      STRES(1)=385.3D0 
      STRES(2)=197.9D0 
      STRES(3)=R0 
      SIGEF=333.7D0 
      SIGK=333.7D0 
C 
      BETA  = R1-H*DLAMBDA/(R3*SIGEF) 
      DO 10 I=1,3 
      DO 10 J=1,3 
   10 D(I,J)=R0 
C Elastic matrix De calculation 
      CONST=E/(R1-POIS*POIS) 
      D(1,1)=CONST 
      D(2,2)=CONST 
      D(1,2)=CONST*POIS 
      D(2,1)=CONST*POIS 
      D(3,3)=(R1-POIS)*CONST/R2 
      D(4,4)=R1 
C P-matrix           
      P(1,1) = R2/R3 
      P(1,2) = -R1/R3 
      P(1,3) = R0 
      P(2,1) = -R1/R3 
      P(2,2) = R2/R3 
      P(2,3) = R0 
      P(3,1) = R0 
      P(3,2) = R0 
      P(3,3) = R2 
C Expanded D-matrix 
      CALL INVERT(D,A) 
      DO 120 I=1,3 
      DO 120 J=1,3 
      B(I,J) = A(I,J)+DLAMBDA*P(I,J) 
  120 CONTINUE 
      CALL INVERT(B,A) 
C Consistent tangential matrix calculation 
      DO 140 I=1,3 
      AVECT(I) = R0 
      DO 140 J=1,3 
      AVECT(I) = AVECT(I)+P(I,J)*STRES(J) 
  140 CONTINUE 
      DO 150 I=1,3 
      BVECT(I) = R0 
      DO 150 J=1,3 
      BVECT(I) = BVECT(I)+A(I,J)*AVECT(J) 
  150 CONTINUE 
      RMENOV = R0 
      DO 160 I=1,3 
  160 RMENOV = RMENOV+AVECT(I)*BVECT(I) 
      BETA = R1-R2*H*DLAMBDA/R3 
      H2 = R4*H*SIGK*SIGK/(R9*BETA) 
      RMENOV = RMENOV+H2 
      DO 170 I=1,3 
      DO 170 J=1,3 
      B(I,J) = BVECT(I)*BVECT(J) 
  170 CONTINUE 
      DO 180 I=1,3 
      DO 180 J=1,3 
      D(I,J) = A(I,J)-B(I,J)/RMENOV  
  180 CONTINUE 
      WRITE(*,11) 
      WRITE(*,12)D 
   11 FORMAT( ' D = ') 
   12 FORMAT(3f15.3)  
      STOP 
      END 

The calculated consistent tangential modulus: 

 
 
     In the Table 1 we have introduced the results of the iterative procedure of the test program, which 
illustrates the effectiveness of the use  the tangential material modulus consistent with 
the integration procedure (the third column). Fnorma is the norm of the residual forces and ITE is the 
number of the iteration step. The first two columns in the table indicate these values using the 
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elastic material modulus e
D  and the classical modulus  of continuous integration contD . At the integration 

procedures it was required that the convergence criterion Fnorma should fall below 0.001.  
 
     Table 1 Iteration steps at different modules 

Elastic material modulus De Modulus Dcont Consistent modulus Dcons 

ite = 1 
 Fnorma = 81.9361     
 ite = 2 
 Fnorma = 45.0528     
 ite = 3 
 Fnorma = 24.1507     
 ite = 4 
 Fnorma = 12.7373     
 ite = 5 
 Fnorma = 6.64959     
 ite = 6 
 Fnorma = 3.44982     
 ite = 7 
 Fnorma = 1.78315     
 ite = 8 
 Fnorma = .919702     
 ite = 9 
 Fnorma = .473786     
 ite =10 
 Fnorma = .243908     
 ite =11 
 Fnorma = .125520     
 ite =12 
 Fnorma = .645826E-01 
 ite =13 
 Fnorma = .332255E-01 
 ite =14 
 Fnorma = .170925E-01 
 ite =15 
 Fnorma = .879277E-02 
 
ITERATION NUMBER       =    15 
 The limit number of iterations 
was exceeded 
 

ite = 1 
 Fnorma = 81.9361     
 ite = 2 
 Fnorma = 18.1286     
 ite = 3 
 Fnorma = 6.25226     
 ite = 4 
 Fnorma = 1.70708     
 ite = 5 
 Fnorma = .430342     
 ite = 6 
 Fnorma = .104781     
 ite = 7 
 Fnorma = .250916E-01 
 ite = 8 
 Fnorma = .595902E-02 
 ite = 9 
 Fnorma = .140928E-02 
 ite =10 
 Fnorma = .332571E-03 
 

ite = 1 
 Fnorma = 81.9361     
 ite = 2 
 Fnorma = 4.06090     
 ite = 3 
 Fnorma = .142896E-02 
 ite = 4 
 Fnorma = .113480E-06 
 

 
 
 

[1] Benča Š.: Aplikovaná nelineárna mechanika kontinua, Vydavateľstvo 1000knih.sk, 2013 
                        (Applied nonlinear continuum mechanics – in Slovak, extracts on mkp-fem.sk) 
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