
2   Numerical (iterative) solution of nonlinear equations 

The formulation of a nonlinear problem in the FEM leads to a system of nonlinear equations 

whose unknown values represent the numerical values of the sought functions at the nodes of 

the computational model. The total number of equations is equal to the total number of 

degrees of freedom of the model. To solve the system of nonlinear equations, FEM programs 

use algorithms in the form of programmed solvers, based on basic mathematical methods of 

solving such problems. Most often they use an iterative approach based on the Newton-

Raphson method, which we now remind with a special focus on the equations of structural 

problems. 

Consider a bar of elastic material with Young's modulus 0E  and a cross-sectional area S0 

fixed and loaded according to Fig. 2.1. The bar has only one degree of freedom - the vertical 

  

 

Fig. 2.1 Simple nonlinear problem 

displacement u, whose dependence on the load force F can be approximately expressed with 

simple nonlinear equation [1] 
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With numerical values E0 = 200 000 MPa,  S0 = 800 mm
2
, 0l = 2000 mm, h = 50 mm, the 

equation (2.1) changes to 

 ( )3 20 01 150 5000, u u u F+ + =  (2.2) 

If we want to find the displacement u for a certain force value  F  iteratively, it is 

advantageous to write equation (2.2) in a form that makes it easy to control the iterative 

process      

 ( ) ( )3 20 01 150 5000 0R u , u u u F= + + − =  (2.3) 

where  R(u)  is called the non-equilibrium force, since the equilibrium equation of the bar (2.2) is 

fulfilled only when this force equals zero. If e.g. for the calculation u we choose force F = 4000 

N, the non-equilibrium force will be 
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 ( ) ( )3 20 01 150 5000 4000R u , u u u= + + −  (2.4) 

A graphical representation of this function in Fig. 2.2 shows that the displacement of the bar 

at the force F = 4000 N is around the value of u
∗
= 35 mm. 

   

Fig. 2.2 

     The principle of the Newton-Raphson method can be easily explained on an equation with 

one unknown. Let us choose the initial value 0u of the displacement (Fig. 2.2) and express the 

non-equilibrium force 0( )R u . At this point make a tangent to the curve (this can be called 

linearization of the function around this point), which marks the displacement 1u on the u-axis 

as the first approximation to the solution. This displacement is easy to determine because, as 

you can see from the picture, it applies 
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and from that 
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An analogous repetition of this procedure with value 1u , 2u  and so on, is the basis for the 

necessary iterative algorithm. The derivative 
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 is so-called tangential stiffness which, as can be seen, is not constant in this process. 

In the Newton-Rapson method, the root (solution) of a one-dimensional equation is thus 

searched as follows: 

1. The gradient of the function R (u), the so-called tangential stiffness, is calculated 

 ( )T

dR
K u

du
=  (2.8) 

2. The initial displacement 0u  is selected 

3. In the cycle from i = 0 to the selected value of the maximum allowable number of 

iterations maxi   

a)  the following displacement value is calculated 
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b) the absolute value of the non-equilibrium force ( )1 1i iR R u+ += is compared with the 

prescribed tolerance tolR  and the decision-making steps are taken  

• if  1iR +  ≥  tolR , go to 3, if not, finish the solution 

• if   i > imax , finish the solution 

Example 2.1 

For the bar fastened and loaded according to Fig. 2.3 calculate by Newton-Raphson method 

the vertical displacement of the end point of the bar uA with the permissible solution error tolR

= 1 N. Given: F = 4000 N, 0l  = 2000 mm, h = 50 mm, 0E = 200 000 MPa, 0S = 800 mm
2
 . 

 

Fig. 2.3 
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The relationship between the displacement of the bar end point and the force F in the form 

of an non-equilibrium force is given by Equation (2.4) 

( ) ( )3 20 01 150 5000 4000R u , u u u= + + −  

with tangential stiffness ( ) ( )20 01 3 300 5000T

dR
K u , u u

du
= = + +  

The first step of the iterative solution: (i = 0): 

The initial displacement (selected) u0 = 0 

The first displacement value is 
( )
( )1 0
0 4000

0 80 mm
0 50T

R
u u

K

−
= − = − =  

The absolute value of the non-equilibrium force at this offset value is (2.4) 1R =  14720 N 

Second step  (i = 1): 

The corrected displacement value is 
( )
( )2 1
80 14720

80 49 46 mm
80 482T

R
u u ,

K
= − = − =  

The non-equilibrium force is 2R = 3352.5 N 

The third step (i = 2) 

The corrected displacement value is 
( )
( )3 2
49 46 3352 53

49 46 37 12 mm
49 46 271 77T

R , ,
u u , ,

K , ,
= − = − =  

The non-equilibrium force dropped to 3R = 435,28 N 

To calculate the next values we used the program shown in Fig. 2.4, which also shows the 

calculated values of the example in the next steps. A graphical illustration of the iterative 

solution process is shown in Fig. 2.5. 
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Fig. 2.4 

From the result of the iteration it can be seen that a sufficiently accurate solution of 

equation (2.2) is the displacement with the value uA = 34.92 mm. 
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Fig. 2.5 
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For the general use of the method it is useful to recall its mathematical principle: the 

function ( )r u  can be approximated (linearized) around the point iu  by decomposition into a 

truncated Taylor series  

 ( ) ( )
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( )i
i i

df u
r u r u u u

dx
≈ + −  (2.10) 

The solution of the equation can then be obtained by successive iterative solution of the 

equation 
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to the extent of accuracy specified by the selected covergence condition (the convergence is 

not guaranteed for any type of function f ). 

     The Newton-Raphson method can also be generalized for a system of nonlinear equations 

with several unknowns. In such a modification it is normally used in FEM since the application 

of this method to a nonlinear problem leads to a system of such equations. The generalized 

displacements of the nodal points arranged in the vector u = [ ]1 2 3
T

nu ,u ,u , ,u…  are unknown. 

In matrix notation, the system of equations of body equilibrium has a shape       

 ( ) ( )= − =r u q u f 0  (2.12) 

where f is the known external nodal force vector of the body and ( )q u  is the internal nodal 

force vector of the FEM model calculated from finite element stresses containing nonlinear 

functions of unknowns u ; equations (2.12) actually express that the body is in equilibrium 

when at each node the internal nodal forces are equal to the external nodal forces (in the 

nodes without external forces, the internal nodal forces themselves are in equilibrium). Using 

FEM we create a system (2.12) and then based on the selected initial values iteratively adjust 

the displacements so that the non-equilibrium forces in the vector drop to sufficiently small 

values according to a certain prescribed convergence condition. 

The Newton-Raphson method for the system of nonlinear equations r(u ) = 0, analogous to 

the one-dimensional case, consists in linearizing the components of the vector function  

                                                 r(u ) =                                       

using their first differential and replacing the nonlinear system of equations with a linear 

system to correct the arguments ∆u . By solving this linear system we get a new iteration ∆+u u  

of approximate solution. By repeating this procedure we find the approximate value of the 

solution u with the required tolerance of either for u or r. 

( ) ( ) ( )1 2

T

nf , f , , f  u u u...
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By linearizing the system r(u ) = 0 around the initial approximation 0u we get 

( ) ( )
( )

( )0
0 0L

∂
= + −

∂

r u
r u r u u u

u
 

We are looking for the first approximation 1u so that ( )1L =r u 0 . Then it applies 

 ( ) ( ) ( )0 1 0 0
∂

− = −
∂

r
u u u r u

u
 (2.13) 

After selecting the initial displacement values 0u , (2.13) represents a linear system of 

equations with an unknown vector 0 1 0∆ = −u u u . If the matrix of this system is regular then its 

solution is 

 

with the so-called tangential body stiffness matrix (Jacobi matrix) 

  (2.14) 

The desired approximation is then 1 0 0∆= +u u u . By repeating this procedure we get the 

relation for the sequence of approximations 

                                                                                           i = 0, 1, 2, ..., maxi                   (2.15) 

If this sequence converges to the solution of the system of equations (2.12), the calculation 

is terminated by the condition for 1i i+ −u u  or 1i i+ −r r . 

In cases where the external nodal forces in (2.12) are not dependent on displacements, the 

tangential stiffness matrix can be expressed from the internal nodal forces and the following 

applies:  

 T

∂ ∂
= =

∂ ∂

r q
K

u u
 (2.16) 

The procedure, as shown in (2.15), requires inversion of the tangential body stiffness matrix 

at each iteration step, which can be time consuming for large problems. On the other hand, in 

this case, the quadratic convergence of the iterative process is guaranteed and we are talking 

about the full Newton-Raphson method. In FEM programs it is usually possible to choose the so-

called modified Newton-Raphson method, where the inversion of the tangential stiffness matrix 

( ) ( )1

1i i T i i

−
+  = −  u u K u r u
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is performed only once - at the beginning of the iteration process and does not change in the 

next iteration steps. Thus, the same matrix is used in all iteration steps. The iterative process 

will be accelerated, but the number of iterative steps will increase as the rate of convergence 

decreases. 

Equation (2.15) can be adjusted to 

 
( ) ( )

1

1 1i i i T i iu u u K u q fD
-

+ +
é ù= - =- -
ë û  (2.17) 

and further multiplied from the left by ( )T iK u  to the form in which it usually occurs in 

program manuals 

 ( ) 1T i i i∆ + = −K u u f q  (2.18) 

Suppose that the iteration procedure begins on an unloaded body. Then the node 

displacements are zero ( 0 T lin= → =u 0 K K ) and since the stresses are zero ( =q 0 ) the 

initial iteration step is performed with a linear system of equations 

1lin =K u f  

From the calculated linear solution 1u  the deformations and stresses in the elements are 

determined, from them 1q  and the vector of non-equilibrium nodal forces of the first iteration 

step 1 1∆ = −r f q  are determined. The tangential stiffness matrix is also created for the next 

iteration step. According to(2.17)), the displacement corrections   1i∆ +u  are then calculated and 

with the new displacements 1 1i i i∆+ += +u u u  the iteration process continued until the 

convergence conditions are met. In the case of a linear problem, convergence is achieved in the 

first iteration step. 

Example 2.2 

The application of the FEM to solve a simple geometrically non-linear truss system with a 

single free nodal point with three degrees of freedom led to a system of three nodal equations 

of equilibrium 

( ) ( )
( ) ( )
( ) ( )

2 2 2
1 1 2 3 1 1 1 2 1 3

2 2 2
2 1 2 3 1 2 2 2 2 3

2 2 2
3 1 2 3 1 3 2 3 3 3

0 01 50 1 5 1 5 600 0

1 5 0 01 50 1 5 800 0

1 5 1 5 0 01 50 500 0

R u ,u ,u , u u , u u , u u

R u ,u ,u , u u , u u , u u

R u ,u ,u , u u , u u , u u

= + + − − =

= + + + − =

= − + + + − =

           

in matrix notation 

( ) ( )= − =r u q u f 0  

where the vector f  contains the orthogonal components of the external force acting at that 

node.  
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Determine the nodal displacement components [ ]1 2 3
T

u u u=u  by the Newton-Raphson 

method. 

The Mathematica solution is shown in Fig. 2.6, where a set of equations is given in part a), 

the program for solving the problem is given in part b), the program start command with the 

necessary input parameters is in part c) and the last part d) contains an iterative sequence of 

solutions with the resulting non-equilibrium force vector satisfying the convergence condition. 

 

Fig. 2.6 
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 From the results it can be seen that iteration begins with zero displacement components      

( 0u 0= ), the vector 1u  contains a linear solution and finally the vector 8u  gives the values of 

the rectangular displacement components in the node (in mm) that satisfy the convergence 

condition. The vector 8r  contains the values of the node non-equilibrium force components at 

such displacement values, i. j. values that meet the convergence condition. 

In principle, the FEM programs use the Newton-Raphson method as well also ANSYS 

program, which will be used in this work for solving simple exemplary nonlinear problems. 

 

Example 3.1 

For the bar fixed and loaded as shown in the figure, use ANSYS to calculate the vertical 

displacement of the bar end point uA when given: F = 4000 N, 0l  = 2000 mm, h = 50 mm, E0 = 

200000 MPa, S0 = 800 mm
2
. Compare the result with an analytical-iterative solution (example 

2.1). 

 

 

Program ANSYS performed the calculation with the following commands: 

1. Utility Menu, File,Change Jobname... /FILNAM = EXAMPLE3.1; 

2. Main Menu, Preprocessor 

3. Preprocessor, Element Type, Add/Edit/Delete,  Add... Link 2D Spar 1, OK, Close; 

4. Preprocessor, Real Constants, Add/Edit/Delete, Add... (Typ 1 Link1), OK, Area = 800, OK, Close; 

5. Preprocessor, Material Props, Material Models... (Material Model Number 1), Structural, Linear,  
Elastic, Isotropic, EX = 200000,  PRXY = 0.3, OK, Material, Exit; 

6. Preprocessor, Modeling, Create, Nodes, In Active CS...  X = 0, Y = 0, Apply,  

    X = sqrt(2000**2-50**2), Y = 50, OK; 

7. Preprocessor, Modeling, Create, Elements, Auto Numbered, Thru Nodes, P: Node 1, P: Node 2, OK; 

8. Main Menu, Solution, Define Loads, Apply, Structural, Displacement, On Nodes, P: Node 1, OK, 
Mark UX, UY , Apply, P: Node 2, OK, Mark UX, OK; 

9. Solution, Define Loads, Apply, Structural, Force/Moment, On Nodes↑ P: Node 2, OK, FY , VALUE =  
4000, OK;  
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10. Solution, Analysis Type, Sol´n Controls... Basic, Large Displacement Static, OK; 

11. Solution,  Solve,  Current LS  

12. Main Menu, Solution, Finish 

13. Main Menu,  General Postproc,  Results Summary 

   SET   TIME/FREQ    LOAD STEP   SUBSTEP  CUMULATIVE 

     1  1.0000             1         1         4 

14. Main Menu,  General Postproc, List Results, Nodal Solution... DOF Solution, Displacement vector 
sum, OK 

PRINT U    NODAL SOLUTION PER NODE 

  THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES             

     NODE      UX          UY          UZ          USUM   

       1   0.0000      0.0000      0.0000      0.0000     

       2   0.0000      34.996      0.0000      34.996     

20. Ansys Toolbar, Quit, Save Geom+Loads, OK; 

 

The result uA = 34.996 mm is in good agreement with the result in Example 2.1. 
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