
1. Relations between displacement and deformation. Geometric 

equations  

1.1 Small deformations 

     Consider a deformable body in a Cartesian coordinate system and load it with a static system 

of external forces. Because the body is fixed (cannot move as a solid) due to these forces the 

initial configuration (geometry) of the body changes and the body points move to a new 

position - the body deforms. 

     Suppose we know the vector of displacement of body points (the FEM provides them on 

finite elements in approximative form) 
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where the continuous functions u, v, and w are the displacement components of the general 

xyz-point in the direction of the coordinate axes. We are interested in the relationship between 

these functions and the searched functions, which will express the degree of deformation of 

the body at its points. 

Let us denote the differential ("infinite" small) volume element dxdydz inside the unloaded 

body at the general point xyz (Fig. 1.1). 

 

Fig. 1.1 

Due to the load the element is displaced in space and deformed (due to its very small 

dimensions a simple type of strain related to the definition of stress is considered: its length 

dimensions change - in the direction of the coordinate axes stretches or shortens - and the right 

angles between its walls are violated) . 
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Consider the element two points A and B on a parallel edge with the x-axis and spaced by dx 

(Fig. 1.2). The original position of points A and B will change as a result of the load. Their line 

moves, changes its length and rotates. For small deformations we neglect the effect of the 

rotation on the length of the line and for the degree of deformation (strain) of the element in 

the x- direction the relative change of the x-distance of the points is chosen 
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i.e. change in distance between points dx∆ divided by the original distance dx. Of course, if the 

element moves only as a whole ( B Au u= ) in the x-axis direction, then 0xε = . As you can see, 

the strain is a signed dimensionless number (with the physical meaning of relative extension or 

truncation). 

The displacement Bu  can be determined from the development of the function u at point A 

to the truncated Taylor series. Because of the small deformations only the first two members 

are considered 
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which actually represents linearization of the function u at point A. By substituting (1.3) to (1.2) 

we get the relation for the calculation of the strain  xε  at points of the body 
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It is actually the gradient of the function ( )u x ,y ,z . 

By an analogous analysis of the deformation of the element in the y and z direction would be 

obtained  
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The functions xε , yε  and zε  , which we call normal strains, cause a change in the volume of 

the element but do not break the right angles between its walls, because they only shift the 

parallel walls of the element by a different value in the direction of their common normal. 

The load of the body, however, also causes so-called shear strains xyγ , yzγ , zxγ  which 

disrupt the perpendicularity of the walls but do not alter the volume of the element. If, for 

example, point C (Fig. 1.1) shifts in the direction of the x-axis relative to point A by a value ∆ , 

then according to Fig. 1.3 
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Fig. 1.3 

by re-using the shortened Taylor series for the Cu  we get 
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In this way, the vertical wall of the element is tilted by an angle 
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Analogous for rotating the horizontal wall (Fig. 1.1) we have 
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and the shear deformation in the xy plane (total change in the right angle of the element in the 

xy plane) is 
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By cyclic interchange of variables we get shear deformations in the other two planes 
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In summary, these linear shear components at the general point of the body can be written 

into a (pseudo) vector 
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     The matrix notation of the symmetrical strain tensor considers the tensor shear 

deformation ij jiε ε=  (Fig. 1.3) on each wall of the element (as a half value of the total shear 

deformation) and holds 
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where we get members from a simple index entry 
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By the deformation formulation of the strength problem, where the displacement field is 

primarily unknown, the strain relations (1.10) clearly determine the deformation field. The 

inverse problem that occurs at the force formulations is more complex, because in the case of 

six deformation components the three displacement components can be unambiguously 

determined only with respect to the constraints that are contained in so-called compatibility 

equations. 

1.2 Large strains 

Linear geometric relations between displacement and strain components (1.10), resp. (1.12) 

at the material points of the deformed body are well suited for a large number of strength 

problems, since important materials used in engineering (metals, concrete, wood, glass, etc.) 

allow only small values of strains. E.g. if one-meter long rod of constant cross-section is 

stretched by 1 mm, it causes numerically small strain 0 001x ,ε = . However, such strain in the 

steel rod causes a stress of about 200 MPa, which is at the limit of the yield stress of 

conventional steel, for several other less ductile materials it is already beyond the strength 

limit.   

On the other hand, there are several materials (eg industrial rubber, some plastics) and 

several technological processes (eg different types of steel forming) where linear geometric 

equations do not fit and more precise relationships must be used in simulation calculations. 

Derivation of these relationships is not easy, there are several methods and applied measures 

of deformation, nor is their application in FEM. Here we will only present the geometrical way 

of deriving the components of the Green-Lagrange strain tensor which already gives some 

insight into nonlinear geometric relations, but it is necessary to say that the properties and 

possibilities of utilization of each measure of strain can only be more clearly explained together 

with its power partner - stress. 
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Returning to Fig. 1.2 and specify the change in the length of the connecting line of points A 

and B taking into account also the effect of different displacement of these points in the y-axis 

direction. We denoted this difference δ  and by approximating the function around A by the 

shortened Taylor series we get 
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and the deformed length of the line is expressed by the Pythagorean theorem 
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We introduce a relative deformation (marked as for small deformations) 
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The function of shape 1 x+  can be decomposed into a series 
2

1 2 8x/ x / ...+ + +  and the 

previous relationship after approximating the member with a square root by two series 

members is given by 
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Analogously, it can be shown that  
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It can be seen that when the deformations are sufficiently small the quadratic terms can be 

neglected and we get the deformation components derived for the linear case.      

Previous relations can be completed by analogous terms for z-direction and we can write the 

independent components of Green-Lagrange strain tensor into vector 
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or in a brief index tensor notation  
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Remark 1: If a bar (rod, truss) with a length 0ℓ  parallel to the x-axis at the end (located at 

the beginning of the coordinate system) is fixed and stretched by ∆ℓ  at the other end, its 

length will change to 0 ∆ℓ ℓ ℓ= +  and the displacement function will be 
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According to the relationship (1.4) valid for small deformations, the standard "engineering" 

strain of the bar is 
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From (1.13) we get the Green's strain  

 

22 2 2
2 0 0 0

2
0 0 0

1 1 1 1

2 2 2 2
G ing ing

u u

x x
ε ε ε

 ∂ ∂ − − − 
= + = + = + =  

∂ ∂   

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ
 (1.18) 

For small deformations ( 1ing <<ε ) the difference between the two measures is negligible:  
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The Green-Lagrange strain tensor is independent of the rigid displacement and solid rotation 

of the body and is therefore often used in the FEM to solve problems with small deformations 

but large displacements and large rotations in the so-called corotational coordinate system.  
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Remark 2:  Let's return to the figure from which we determined the components of the 

Green-Lagrange strain tensor: 

 

 

Fig. 1.4 

The Green-Lagrange strain is, as already mentioned, expressed by the ratio  
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It is an expression analogous to small deformations but note that now the direction of the 

line A'B' and hence the direction xε  is different from the direction AB, respectively dx. The 

component has a direction identical to the direction in which the segment dx is rotated under 

the load. If in the next loading step the line is only moved and rotated without changing the 

distance A'B' then the amount of deformation does not change. The components of the Green-

Lagrange strain follow in their direction the rotation of the element (material particle) but their 

size is independent of this rotation (and of course the rigid displacement). This also valid for 

their partner (energy-bound) stress components of the second Piola-Kirchhoff stress (Chapter 

5).  
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